Uninformed Search

Introduction to Artificial Intelligence

Dr. Robin Burke
Problem domain

- Static
 - only our actions change the world
- Deterministic
 - actions always work the way we expect
- Fully-observable
 - we always know everything we need about the world

To solve

- World = state representation
- Solution = sequence of operators
 - transform the initial state into the goal state
State Space

- The collection of all world states
- Connected by edges which are operations
- Solution
 - a path through the state space
 - leads from initial state to goal state
- Problem solving = graph search
Farmer State Space

(S,S,S,S) → (N,N,N,N)

Illegal nodes

(S,S,S,N) → (N,N,S,N)

(M, N, S, S, S) → (M, N, S, S, N)

(M, N, S, N, S) → (M, N, S, N, N)

(M, N, N, S, S) → (M, N, N, S, N)

(M, N, N, N, S) → (M, N, N, N, N)

(M, S, S, S, S) → (M, S, S, S, N)

(M, S, S, N, S) → (M, S, S, N, N)

(M, S, N, S, S) → (M, S, N, S, N)

(M, N, S, S, S) → (M, N, S, S, N)

(M, N, S, S, N) → (M, N, S, S, N)

(M, N, S, N, S) → (M, N, S, N, S)

(M, N, N, S, S) → (M, N, N, S, N)

(M, N, N, S, N) → (M, N, N, S, N)

(M, N, N, N, S) → (M, N, N, N, N)

(M, S, N, S, S) → (M, S, N, S, N)

(M, S, N, S, N) → (M, S, N, S, S)

(M, S, N, N, S) → (M, S, N, N, S)

(M, N, N, S, S) → (M, N, N, S, N)

(M, N, N, S, N) → (M, N, N, S, N)

(M, N, N, N, S) → (M, N, N, N, S)

(M, N, N, N, N) → (M, N, N, N, N)
Search Tree

- For better bookkeeping
 - transform the state space into a search tree

- Nodes
 - not just states but
 - state, parent, action, cost, depth
 - I said path, but you really don’t want a million copies of the same path
 - (parent, edge) are sufficient to reconstruct
Search Tree (ignore illegal states)

N1: (S,S,S,S), {}

N2: (N,S,N,S), (N1, MGN)

N3: (S,S,N,S), (N2, MFS)

N4: (N,N,N,S), (N3, MWN)

N5: (S,N,S,S), (N4, MGS)

N6: (N,N,S,N), (N5, MCN)

N7: (S,N,S,N), (N6, MFS)

N8: (N,N,N,N), (N7, MGN)

N9: (N,S,N,N), (N3, MCN)

N10: (S,S,S,N), (N9, MGS)

N11: (N,N,S,N), (N10, MWN)

N12: (S,N,S,N), (N11, MFS)

N13: (N,N,N,N), (N12, MGN)
Basic idea

- **Given**
 - a set of nodes N
 - a successor function f that
 - takes a node n
 - returns all of the nodes S reachable from n in a single action

- **Algorithm**
 - pick n from N (somehow)
 - $s = state(n)$
 - $p = path(n)$
 - $S = f(s)$
 - for all $s', a \in S$
 - if s is solution, done
 - if s is illegal, discard
 - else
 - create new node $n_a = <s', (n,a)>$
 - $N = N - n + n_a$
 - repeat
Search strategies

- All of the interesting action is
 - maintenance of the active nodes
 - “search frontier”

- Classes of strategies
 - uninformed search
 - no knowledge of the search space is assumed
 - do not prefer one state over another
 - informed search
 - use knowledge of the search space
 - heuristic search
Uninformed Strategies

- Depth-first search
- Breadth-first search
- Iterative deepening
Characterizing search strategies

- Completeness
 - does it always find the answer?

- Time
 - how long does it take?
 - worst-case run time performance / complexity

- Space
 - how much memory do we need?
 - worst-case space complexity

- Parameters
 - b: branching factor of the search space
 - choices at each node
 - d: depth of the solution
 - # of steps
 - m: maximum depth of the tree
 - could be infinite
Depth-first search

- Unexamined nodes
 - last-in first-out stack

- Meaning
 - grab the top node on the node list
 - replace with its children
 - grab the top one of these
 - etc.
Example: path planning

- states = positions
- initial state
 - v5
- goal state
 - v6
Search Tree?
DFS

- Start with search node n_1
- Add successors to stack
 - *assume we enumerate clockwise from right*
 - n_2, n_3, n_4
- Pop off the most recent one
 - n_4
- Expand that node
- etc.
path: v5, v1, v2, v4, v3, v6
Properties of DFS

- **Complete?**
 - Not always
 - fails in infinite-depth spaces
 - Must avoid repeated states along path

- **Time?**
 - $O(b^m)$: terrible if m is much larger than d
 - but if solutions are dense, may be OK

- **Space?**
 - $O(bm)$, i.e., linear space, if no repeated states
 - but closed list makes it $O(b^m)$ in worst case

- **Optimal?**
 - No
 - Returns first answer, not necessarily shortest path
Breadth-first search

- Unexamined nodes
 - first-in first-out queue

- Meaning
 - grab the first thing on the queue
 - put its children on the end
 - grab the next thing

- Effect
 - we don’t examine any paths of length \(k \)
 - until we’ve looked at all paths of length \(k-1 \)
 - achieves optimality
open

n1: v2, n4
n13: v3, n4
n7: v6, n3
n8: v3, n3
n6: v7, n3
n5: v6, n2
n4: v1, n1
n3: v4, n1
n2: v7, n1
n1: v5, init

closed

n1: v5, init

n2: v7, n1
n3: v4, n1
n4: v1, n1
n5: v6, n2

path: v5, v7, v6
Properties of BFS

- **Complete**
 - If b is finite

- **Time**
 - $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$
 - Looks better than $O(b^m)$

- **Space**
 - Worst case = all nodes in memory
 - $O(b^{d+1})$

- **Optimal**
 - Yes, for uniform cost case

Often a bigger problem than time
Iterative Deepening

- How to get optimality of BFS
 - without the space penalty
- Counter-intuitive idea
 - create a depth limit for DFS
 - DFS(k)
 - fails if solution is deeper than k
 - do DFS(k) over and over again
 - as k increases from 1 to d
- Seems inefficient
 - throw away bk nodes after DFS(k)
 - re-generate them for DFS(k+1)
k = 1

open

closed

n1: v5, init

n2: v7, n1

n3: v4, n1

n4: v1, n1

failure
path: v5, v4, v6
Wasted time?

- Number of nodes generated in a depth-limited search to depth d with branching factor b:
 \[N_{DLS} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d \]

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:
 \[N_{IDS} = (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + 1b^d \]

- For $b = 10$, $d = 5$,
 - $N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$

- Overhead = $(123,456 - 111,111)/111,111 = 11\%$

- In general
 - N_{IDS} is dominated by b^d term
 - $O(b^d)$
Properties of IDS

- Complete?
 - Yes

- Time?
 - $O(b^d)$
 - same as BFS, maybe some overhead

- Space?
 - $O(bm)$, i.e., linear space, if no repeated states

- Optimal?
 - Yes, for uniform cost
Bi-directional search

- In some (but not all) search spaces
 - steps are reversible
 - goal state unique
- Counter-example
 - get to work
- If so
 - we can work backwards from end state
 - as well as forward from initial state
 - two BFS operations
Properties of Bidirectional BFS

- Complete?
 - Yes

- Time?
 - $O(b^{d/2})$
 - can be a big savings

- Space?
 - $O(b^{d/2})$
 - space still a problem

- Optimal?
 - Yes, for uniform cost
Paths with costs

- What if different operations have different costs / benefits?
 - distance
 - $$
 - $$$
 - energy
 - *in games, health*
Costs

- If costs are not uniform
 - then search must take this into account
 - otherwise, optimality is lost
 - shortest in terms of # operations may be very expensive

Question

- how to organize search to take cost into account?
Thursday

- Read Chapter 4.1-4.2