Heuristic Search

Introduction to Artificial Intelligence

Dr. Robin Burke
Review

- We can turn (certain classes of) problems into state spaces
- We can use search to find solutions
 - DFS
 - BFS
 - IDS
- But what about operator cost?
Example: path planning

- states = positions
- initial state
 - v5
- goal state
 - v6
Graph with costs
Possible solutions

Costs

- 4, 6, 6, 7, 9, 12, 15
- worst is almost 4x best
- shortest path is not lowest-cost
Uniform-cost search

Simple idea
- use the least cost option

Don’t want
- to use the least cost operation at a given node
- why not?

Concentrate on lowest-cost path so far
- Djikstra’s algorithm
Search algorithm

- **Given**
 - a set of nodes \(N \)
 - a successor function \(f \) that
 - takes a node \(n \)
 - returns all of the nodes \(S \) reachable from \(n \) in a single action

- **Algorithm**
 - sort \(N \) by path cost, select cheapest path
 - \(s = \text{state}(n) \)
 - \(p = \text{path}(n) \)
 - \(S = f(s) \)
 - for all \(s', a \in S \)
 - if \(s \) is solution, done
 - if \(s \) is illegal, discard
 - if on closed list, ignore this path, must be costlier
 - else
 - create new node \(n_a = <s', (n,a)> \)
 - \(N = N - n + n_a \)
 - repeat
Basic idea

- Don’t consider any paths of cost k
 - until you’ve considered paths of cost $< k$

Implementation

- need a priority queue
 - path cost = inverse priority
 - nodes with lowest path cost come first

- possible data structure
 - heap
path: v5, v1, v2, v4, v6
Properties of Uniform-Cost Search

- **Complete?**
 - Yes

- **Time?**
 - $O(b^{1+C/e})$
 - where C is the cost of the best path
 - e is the minimum action cost

- **Space?**
 - same

- **Optimal?**
 - Yes
Heuristic search

- What if we can measure our distance to a solution?
- We don’t have to guess about the “right” direction
 - perhaps not perfect
- Example
 - Straight-line distance on a map
Heuristic

- Suggests paths that are likely to lead in the right direction
 - unlike uniform-cost algorithm

Example

- start in Arad (366)
- cheapest edge to Zerind
 - but Zerind is actually farther (374)
- better choice Sibiu (253)
 - even though the edge is longer
Idea

- Greedy best-first search
 - maximize the heuristic at each step
- Same priority queue as before
 - but prioritize by heuristic
 - the closer the better
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- Complete?
 - No – can get stuck in loops
 - Mehadia -> Dobreta -> Mehadia ...
 - if road to Craiova missing

- Time?
 - $O(b^m)$,
 - but a good heuristic can give dramatic improvement

- Space?
 - $O(b^m)$ -- keeps all nodes in memory

- Optimal?
 - No
 - There is a shorter path to Bucharest
 - via Fagaras = 450
 - via Rimnicu Vilcea = 418
A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n) = g(n) + h(n)$
 - $g(n) = \text{cost so far to reach } n$
 - $h(n) = \text{estimated cost from } n \text{ to goal}$
 - $f(n) = \text{estimated total cost of path through } n \text{ to goal}$
A* search example
Admissible heuristics

- A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the **true** cost to reach the goal state from n.
- An admissible heuristic **never overestimates** the cost to reach the goal, i.e., it is **optimistic**
- Example: $h_{SLD}(n)$
 - (never overestimates the actual road distance)
- If $h(n)$ is admissible, A* is optimal
 - (see book for proof)
Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
Properties of A*

- **Complete?**
 - Yes
 - unless there are infinitely many nodes with $f \leq f(G)$

- **Time?**
 - Exponential

- **Space?**
 - Keeps all nodes in memory

- **Optimal?**
 - Yes
Search demo
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$
 (i.e., no. of squares from desired location of each tile)

- $h_1(S) =$?
- $h_2(S) =$?
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$
 (i.e., no. of squares from desired location of each tile)

- $h_1(S) = ? \quad = \ 8$
- $h_2(S) = ? \quad = 3+1+2+2+2+3+3+2 = 18$
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible)
 - then h_2 dominates h_1
 - h_2 is better for search

- Typical search costs (average number of nodes expanded):
 - $d=12$
 - IDS = 3,644,035 nodes
 - $A^*(h_1) = 227$ nodes
 - $A^*(h_2) = 73$ nodes
 - $d=24$
 - IDS = too many nodes
 - $A^*(h_1) = 39,135$ nodes
 - $A^*(h_2) = 1,641$ nodes
Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Practical

- Programming assignment using AIMA search code
 - link on course page
- Download and compile
- Take a look at search demos for eight-puzzle, etc.
Tuesday

- Reading Ch. 4.3-4.6